|
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational force, is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-D spacetime geometry around the star onto 3-D space. ==Mathematical expression== The full geodesic equation is this: : where ''s'' is a scalar parameter of motion (e.g. the proper time), and are Christoffel symbols (sometimes called the affine connection or Levi-Civita connection) which is symmetric in the two lower indices. Greek indices take the values (). The quantity on the left-hand-side of this equation is the acceleration of a particle, and so this equation is analogous to Newton's laws of motion which likewise provide formulae for the acceleration of a particle. This equation of motion employs the Einstein notation, meaning that repeated indices are summed (i.e. from zero to three). The Christoffel symbols are functions of the four space-time coordinates, and so are independent of the velocity or acceleration or other characteristics of a test particle whose motion is described by the geodesic equation. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Geodesics in general relativity」の詳細全文を読む スポンサード リンク
|